Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

DSpace/Manakin Repository

Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

Show simple item record


dc.contributor.author Huang, Y. H.
dc.contributor.author Saiers, J. E.
dc.contributor.author Harvey, J. W.
dc.contributor.author Noe, G. B.
dc.contributor.author Mylon, Steven E.
dc.date.accessioned 2012-02-16T21:04:45Z
dc.date.available 2012-02-16T21:04:45Z
dc.date.issued 2008-04-05
dc.identifier.citation Huang, Y. H., et al. (2008). "Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades." Water Resources Research 44 (4): W04408. en_US
dc.identifier.uri http://hdl.handle.net/10385/904
dc.description.abstract The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 mm latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. en_US
dc.publisher Water Resources Research en_US
dc.title Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades en_US
dc.type Article en_US
dc.identifier.doi 10.1029/2007WR006290

Files in this item

Files Size Format View
Mylon-WaterResourcesResearch-vol44-2008.pdf 444.6Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search LDR


Advanced Search

Browse

My Account