Perfect parallelepipeds exist

DSpace/Manakin Repository

Perfect parallelepipeds exist

Show simple item record


dc.contributor.author Sawyer, J. F.
dc.contributor.author Reiter, Clifford A.
dc.date.accessioned 2011-04-08T14:50:59Z
dc.date.available 2011-04-08T14:50:59Z
dc.date.issued 2011-04
dc.identifier.citation Sawyer, J. F. and C. A. Reiter. (2011) "Perfect parallelepipeds exist." Mathematics of Compuation 80 (274): 1037-1040. en_US
dc.identifier.uri http://hdl.handle.net/10385/830
dc.description.abstract There are parallelepipeds with edge lengths, face diagonal lengths and body diagonal lengths that are all positive integers. In particular, there is a parallelepiped with edge lengths 271, 106, 103, minor face diagonal lengths 101, 266, 255, major face diagonal lengths 183, 312, 323, and body diagonal lengths 374, 300, 278, 272. Focused brute force searches give dozens of primitive perfect parallelepipeds. Examples include parallellepipeds with up to two rectangular faces. en_US
dc.publisher Mathematics of Computation en_US
dc.title Perfect parallelepipeds exist en_US
dc.type Article en_US
dc.identifier.doi 10.1090/S0025-5718-2010-02400-7

Files in this item

Files Size Format View
Reiter-Mathemat ... ation-vol80-no274-2011.pdf 340.9Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search LDR


Advanced Search

Browse

My Account